might prove to be a more definitive and satisfactory nitroso spin trap for peroxyl radicals than MNP because the electron-withdrawing CF_3 group would be expected to stabilize the spin adduct, $CF_3N(O)OOR$.¹¹

Photolysis of an oxygen-saturated solution of di-tertbutyl ketone in CFCl₃ at 173 K in the cavity of an EPR spectrometer yielded the persistent tert-butylperoxyl radical (single line, g = 2.0146). On cutting off the UV irradiation and, in the dark,¹⁴ passing a fine stream of bubbles of CF₃NO through the solution, the tert-butylperoxyl radical was immediately destroyed with the formation of another persistent radical. The EPR parameters for this second radical, viz.,¹⁶ g = 2.0059, $a^{N}(1N) = 22.76$ G, $a^{F}(3F) = 5.80$ G, identify it as a nitroxide. Repetition of this experiment using isotopically labeled oxygen (74 atom % 17 O) caused the doubly labeled *tert*-butylperoxyl radical $(a^{17}O = 23.4 \text{ and } 17.6 \text{ G})^{18,19}$ to be converted to nitroxide, which showed additional hyperfine splitting by only a single ¹⁷O atom $(a^{17}O = 0.93 \text{ G})^{16}$ and no line broadening that might be attributable to a second ¹⁷O atom. This suggests that the observed nitroxide is not the peroxyl adduct, 1, but is instead the *tert*-butoxyl adduct, 2, formed by the reaction sequence:

$$(Me_{3}C)_{2}C \Longrightarrow 0 \xrightarrow{n\nu} 2Me_{3}C + CO$$

$$Me_{3}C + O_{2} \rightarrow Me_{3}COO \cdot$$

$$Me_{3}COO + CF_{3}NO \rightarrow CF_{3}N(\dot{O})OOCMe_{3}$$

$$1$$

$$CF_{3}N(\dot{O})OOCMe_{3} \rightarrow CF_{3}NO_{2} + Me_{3}CO \cdot$$

$$Me_{3}CO + CF_{3}NO \rightarrow CF_{3}N(\dot{O})OCMe_{3}$$

$$2$$

Further confirmation of this spectral assignment was obtained by generating tert-butoxyls by the thermal decomposition of di-tert-butyl hyponitrite in the presence of CF_3NO in C_6F_6 at 300 K. A nitroxide having the EPR parameters reported above, which in this case must be 2, was obtained.

$$Me_3CON = NOCMe_3 \rightarrow 2Me_3CO + N_2$$

Final confirmation that CF₃NO does not yield an observable peroxyl spin adduct was obtained by generating tert-butoxyl and tert-butylperoxyl radicals simultaneously in its presence. A solution of di-tert-butyl trioxide¹³ was prepared by UV photolysis of di-tert-butyl peroxide and isobutane in oxygen-saturated CFCl₃ at 163 K. The light was cut off¹⁴ and CF₃NO was bubbled into the solution; the temperature was then allowed to increase to ca. 240 K at which point the trioxide decomposes¹³ to form the alkoxyl and peroxyl radicals. Only nitroxide 2 was observable.

$$Me_3COOOCMe_3 \rightarrow Me_3CO + Me_3COO$$

(10) Pfab, J. Tetrahedron Lett. 1978, 843-846.

Since CF₃NO does not yield an observable *tert*-butylperoxyl spin adduct, it is highly improbable that MNP could do so. Our results therefore support the conclusion¹⁰ that the reaction of MNP with peroxyl radicals yields the alkoxyl spin adduct. The contrary conclusion⁸ rests on an experiment in which $Me_3CO^{17}O^{17}OCHMe_2$ (generated by photolysis of Me₃COOCMe₃ in ³⁴O₂-saturated propane) was allowed to warm up to 263 K in the presence of MNP. Two ¹⁷O-labeled nitroxides were detected. Their EPR parameters were g = 2.0057, $a^{N} = 27.25$ G, $a^{170}(1^{17}\text{O}) = 1.03$ G, and g = 2.0056, $a^{N} = 28.7$ G, $a^{170}(1^{17}\text{O}) = 4.6$ G. In a separate experiment the former radical was identified as $Me_3CN(\dot{O})^{17}OCMe_3$. The latter radical was assigned as a peroxyl spin adduct, Me₃CN(\dot{O})¹⁷OOR, with R = Me₃C or Me_2CH . We suggest that the latter radical was actually the isopropoxyl spin adduct, Me₃CN(O)¹⁷OCHMe₂. This suggestion receives support from the fact that for Me₃CN(\dot{O})OR radicals the value of a^{N} decreases along the series R = Me, Et, *i*-Pr, *t*-Bu.²⁰⁻²² In 2-propanol as solvent, $a^{N} = 29.0 \text{ G}$ for $R = i \cdot Pr^{21}$ and 27.06 G for $R = t \cdot Bu^{22}$ values which are in satisfactory agreement with $a^N = 28.7$ G for R = i-Pr (our assignment) and 27.25 G for R = t-Bu (original⁸ assignment). Such a comparatively large change in a^{N} for what would appear to be a minor change in the nature of R implies a significant difference in the configuration and/or conformation of the two radicals. Such a change in geometry could, we suggest, also be sufficient to change a^{170} from 1.0 G for R = t-Bu to 4.6 G for R = *i*-Pr.

Finally, we note that although our hope that CF_3NO would yield observable spin adducts with peroxyl radicals was not realized, it did yield a spin adduct with tertbutoxyl that was very much more persistent than the MNP-tert-butoxyl spin adduct²³ and other alkoxy alkyl nitroxides. Thus, for example, $CF_3N(O)OCMe_3$ at an initial concentration of ca. 1.1×10^{-5} M in CFCl₃ decayed with first-order kinetics and with a half-life of ca. 105 s at 313 K.²⁴ For comparison, the half-life of $Me_3CN(\dot{O})$ -OCMe₃ in di-tert-butyl peroxide as solvent was found²³ to be ca. 5 s at the same temperature. Trifluoronitrosomethane may therefore have some advantages over MNP as a spin trap for alkoxyl radicals.

Registry No. Me₃COO·, 3395-62-8; CF₃NO, 334-99-6; CF₃N(O·)-OCMe₃, 82880-42-0.

(20) Sargent, F. P.; Gardy, E. M. J. Phys. Chem. 1976, 80, 854-856.
(21) Sargent, F. P.; Gardy, E. M. J. Phys. Chem. 1977, 81, 1215-1216.
(22) Janzen, E. G.; Coulter, G. A. Tetrahedron Lett. 1981, 22, 615-619.
(23) Perkins, M. J.; Roberts, B. P. J. Chem. Soc., Perkin Trans. 2 1974,

297 - 304.

(24) The final products can be presumed to be N, N'-di-tert-butoxyl-N.N'-bis(trifluoromethyl)hydrazine and trifluoronitromethane.²⁵
 (25) Barton, D. H. R.; Harris, R. L.; Hesse, R. H.; Pechet, M. M.;

Urban, F. J. J. Chem. Soc., Perkin Trans. 1 1974, 2344-2346.

An Unusual Dimer Resulting from the Addition of Ethyl Chloroformate to a 2-Lithio-1,3-dithiane

John C. Sih,* David R. Graber, Stephen A. Mizsak, and Terrence A. Scahill

The Upjohn Company, Kalamazoo, Michigan 49001

Received April 27, 1982

Some years ago, Corey and Seebach¹ reported that treatment of 2-lithio-1,3-dithianes 1 at -70 °C with a large

⁽¹⁰⁾ Pfab, J. Tetrahedron Lett. 1978, 843-846.
(11) In this connection note that CF₃OOOCF₃¹² is thermally much more stable than Me₃COOOCMe₃.¹³
(12) Anderson, L. R.; Fox, W. B. J. Am. Chem. Soc. 1967, 89, 4313-4315. Thompson, P. G. Ibid. 1967, 89, 4316-4319.
(13) Bartlett, P. D.; Günther, P. J. Am. Chem. Soc. 1966, 88, 3288-3294. Bartlett, P. D.; Lahav, M. Isr. J. Chem. 1972, 10, 101-109.
(14) The photologic of D 100 mit bit bits. UV explicit here here here is a stable bit.

⁽¹⁴⁾ The photolysis of CF₃NO with either UV or visible light yields the extremely persistent (CF₃)₂NO radical.¹⁵ (15) Chatgilialoglu, C.; Ingold, K. U. J. Am. Chem. Soc. **1981**, 103,

^{4833-4837.} (16) The EPR spectrum of this radical shows some interesting changes

with temperature that will be reported in detail elsewhere.¹⁷ (17) Chatgilialoglu, C.; Ingold, K. U. J. Phys. Chem., in press

⁽¹⁸⁾ Adamic, K.; Ingold, K. U.; Morton, J. R. J. Am. Chem. Soc. 1970, 92, 922-923.

⁽¹⁹⁾ Howard, J. A. Can. J. Chem. 1972, 50, 1981-1983.

⁽¹⁾ E. J. Corey and D. Seebach, Angew. Chem., Int. Ed. Engl., 4, 1077 (1965).

Table I. ¹H NMR Data for 5

hydrogen	chemical shift ^a (multiplicity)	coupling constant, Hz
CH,COC=0	$1.28 (t)^{b}$	7.0
SCH,CH,CH,S	1.84 (quint)	7.0
$CH_2CH_2C=C(2)$	2.0-2.2 (m)	
$CH_2C=C(1)$	2.0-2.2 (m)	
$CH_2C=C(1)$	2.4 (m)	
SCH ₂ CH ₂ CH ₂ S	2.60 (t)	7.0
	2.70 (t)	7.0
H _{eq} S H _{ax}	H _{ax} 3.29 (d, d, d) H _{eq} 2.6-2.7 (m)	$J_{\text{gem}} = 14.0, \\ J_{\text{vic}} = 12.0, 2.0$
CH,OC=O	4.26 (q)	7.0
$CH_2 = C$	4.99 (d, d)	$J_{cis} = 10.0,$ $J_{acm} = 2.0$
	5.06 (d, d)	$J_{\text{trans}} = 18.0$
$CH_2CH=CH_2$	5.83 (d, d, t)	$J_{\rm vic} = 7.0$

^a Chemical shifts in parts per million relative to internal tetramethylsilane. ^b s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

excess of ethyl chloroformate provided the ethyl carboxylates 3 in good yields. As a method for the preparation

$$H_{0x} = CH_3, CH_2Ph; R_2 = Li$$
1, R₁ = CH₃, CH₂Ph; R₂ = Li
2, R₁ = CH₂=CHCH₂CH₂; R₂ = Li
3, R₁ = CH₃, CH₂Ph; R₂ = CO₂C₂H₅
4, R₁ = CH₂=CHCH₂CH₂; R₂ = CO₂C₂H₅

of various α -keto esters, we required a synthesis of dithiane ester 4. Under somewhat different conditions, addition of ethyl chloroformate² to a -50 °C tetrahydrofuran solution of 2-(buten-1-yl)-2-lithio-1,3-dithiane (2) afforded not only the desired product 4 in low yield but a second, more polar dimeric compound. We report in this paper the structural assignment 5 for this anomalous compound.

From a cursory examination, the ¹H NMR spectra of both compounds appeared very similar. The only distinguishing features in their spectra was found in the ¹H integration. The spectrum of 4 showed, as expected, a 1:1 ratio for the two downfield dithiane ring hydrogens³ (H_{ax}, δ 3.29) relative to the carbethoxy hydrogens (CO₂CH₂CH₃). In the spectrum of the unknown, integration revealed two equivalent carbethoxy groups for each dithiane ring (CO₂CH₂CH₃; H_{ax}, ratio 2:1).

To determine all the possible structures for the dimer that best satisfy the NMR requirements, the NMR data was input to a computer-assisted structure-elucidation program (CASE).⁴ The observed ¹H and ¹³C spectral properties of the unknown product are presented in Tables I and II.

There was no duplication in the ¹H absorptions for the carbethoxy and butenyl moieties. Consequently, these groups resided in a symmetrical or nearly symmetrical magnetic environment with respect to each other. The ¹³C spectrum further reflected the symmetry properties of the molecule, e.g., the vinyl carbons were only slightly dis-

Table II. ¹³C NMR Data for 5

carbon	chemical shift ^a (multiplicity)
CH ₃ CO	$14.04 (q)^{b}$
SCH ₂ CH ₂ CH ₂ S	25.00 (t)
SCH, CH, CH, S	27.43 (t)
SCH ₂ CH ₂ CH ₂ S	28.51 (t)
-S ₃ CH ₂ CH ₂ C=C	42.09 (t)
SCH ₂ CH ₂ C=C	32.86 (t)
$CH_2C=C$	31.92 (t)
	28.92 (t)
$SCH_2CH_2CH_2S$	28.33 (t)
OCH ₂	62.03 (t)
-	61.15 (s)
— ¢—	62.25 (s)
1	
$CH_2 = C$	115.20 (t)
	115.35
CH=C	137.00 (d)
_	137.38
0	168.62 (s)

^a Chemical shifts in parts per million relative to internal tetramethylsilane. ^b s = singlet, d = doublet, t = triplet, q = quartet.

placed, a single set of signals for the carbethoxy groups, and doubly intense lines corresponding to the carbons adjacent to the sulfurs (SCH₂CH₂CH₂S and SCH₂CH₂-CH₂SCH₂. The most revealing structural information obtained from the ¹³C spectrum was the presence of two quaternary carbons at 61.15 and 62.25 ppm.

Among the possible structures generated by CASE, only 5, 6, and 7 were in agreement with the observed NMR data.

Structures 6 and 7 can be ruled out by considering their feasibility of formation. The assignment of structure 5 to the dimer was also consistent with the experimental findings and mechanism of formation. The yield of 5 varied somewhat, depending on the rate of ethyl chloroformate addition and reaction temperature. Addition of ethyl chloroformate to a -15 °C solution of 2^5 or a slow addition of reagent favored the formation of 5. Irrespective of the addition rate and temperature, TLC analysis of the

⁽²⁾ Although the large excess of ethyl chloroformate used in ref 1 was not specified, we suspect these workers employed greater than 2 equiv. The results reported herein were obtained with less than 2 equiv of reagent.

⁽³⁾ For a discussion of the ¹H NMR properties of 1,3-dithianes, see E. L. Eliel, A. A. Hartman, and A. G. Abatjoglon, J. Am. Chem. Soc., 96, 1807 (1974).

^{(4) (}a) L. A. Dolak and M. E. Monk, Current Chemotherapy and Infectious Disease Proceedings of the 11th ICC and 19th ICAAC American Society of Microbiology, 1980, p 467-469; (b) L. A. Dolak and C. DeBoer, J. Antibiot., 33, 83 (1980), and references cited therein.

⁽⁵⁾ Even when the reaction was carried out by rapid addition of excess ethyl chloroformate (10 equiv) to a -73 °C tetrahydrofuran solution of 2 (1 equiv), the formation of 5 was not totally suppressed. TLC analysis indicated 10-15% of dimer 5 and 85-90% of 4.

crude reaction mixture always indicated 5 as the major side product. However, when an inverse addition procedure was used, 4 was then obtained as the only product in excellent yield $(85\%).^6$

A plausible mechanism to account for the formation of 5 involves reaction at sulfur of dithiane 4 with the lithio anion 2 to generate the ester enolate 8. In the presence

of ethyl chloroformate, 8 was trapped to yield dimer 5. It was surprising that 2 served as a nucleophile toward sulfur and not the carbonyl group of $4.^7$

Further experiments are required to determine the generality of this unusual dimerization reaction. We suspect, however, that formation of dimeric side products, such as 5, can occur whenever 2-lithio-1,3-dithiane derivatives are alkylated with ethyl chloroformate. The inverse addition procedure allows the reaction to proceed in the normal manner. This technique insures a high yield of the desired product and avoids the use of excessive amounts of ethyl chloroformate.

Experimental Section

All ¹H NMR spectra were run in CDCl₃ solutions with tetramethylsilane as the internal standard, using either a Varian A-60A or a Varian XL-200 spectrometer operating in the FT mode. All ¹³C NMR spectra were run on the same Varian XL-200 tuned to the carbon resonance frequency (50.3 MHz). The decoupler was gated on and off during various experiments to obtain noisedecoupled, off-resonance and coupled with NOE enhancement spectra. High-resolution mass spectra were recorded with a CEC 21-110B spectrometer at 70 eV.

Typical Procedure for the Addition of Ethyl Chloroformate to 2-(Buten-1-yl)-2-lithio-1,3-dithiane (2). To a magnetically stirred solution of 2-(buten-1-yl)-1,3-dithiane (11.30 g, 64.94 mmol) in 200 mL of tetrahydrofuran, cooled in a -35 °C bath, was added 41.40 mL of *n*-butyllithium (1.6 M in hexane, 66.24 mmol). Stirring was continued for 1.5 h while the cooling bath temperature was maintained between -25 and -20 °C. At the end of this period, the resulting rust-colored solution of 2 was cooled to -50 °C, and 9.82 g (90.92 mmol) of ethyl chloroformate was added over a 3-5-min period. After addition, the cooling bath was removed and the reaction allowed to warm to 0 °C. The solution was then poured into 150 mL of cold 1 N potassium hydrogen sulfate solution and thoroughly extracted with ether. The combined ether extracts were successively washed with 1 N

(6) D. Seebach and E. J. Corey, J. Org. Chem., 40, 231 (1975). These authors obtained by inverse addition a 60% yield of 3 ($R = CH_3$) when 10 mmol of 1 ($R = CH_3$) was added to a -73 °C tetrahydrofuran solution of 200 mmol of ethyl chloroformate.

(7) B. M. Trost and M. T. K. Mao, *Tetrahedron Lett.*, 3523 (1980). A similar reaction was observed where a Grignard reagent reacted with lactone a exclusively at sulfur and the resulting enolate trapped with acetaldehyde to give alcohol b.

sodium hydroxide solution, water, and saturated brine and dried through anhydrous sodium sulfate. Removal of the solvent in vacuo gave a residual yellow oil, which was chromatographed with 1 kg of silica gel. Elution with Skellysolve B-ethyl acetate (15:1, v/v) afforded 4.05 g of 4 and 5.20 g of dimer 5, both as viscous colorless oils [TLC, Skellysolve-B-ethyl acetate (9:1)]: R_f 0.36 for 5 and 0.46 for 4; mass spectrum, m/e calcd for 4 (C₁₁H₁₈O₂S₂, M⁺) 246.0748, found 246.0735; mass spectrum, m/e for 5 calcd

for $C_{14}H_{23}O_4S_2$ (M⁺ – SCH₂CH₂CH₂CH₂CH₂CH₂CH=CH₂)CH 319.1038, found 319.1043.

Anal. Calcd for 4 ($C_{11}H_{18}O_2S_2$): C, 53.62; H, 7.36. Found: C, 53.87; H, 7.52. Calcd for 5 ($C_{22}H_{36}O_4S_4$): C, 53.62; H, 7.36. Found: C, 53.85; H, 7.42.

In other experiments, we have observed by TLC an increase in yield of 5 with respect to 4 when either the ethyl chloroformate addition was extended over a 15-min period or added to a -15to -10 °C solution of 2.

Inverse Addition Procedure. 2 was prepared as described above from 4.55 g (26.15 mmol) of 2-(buten-1-yl)-1,3-dithiane and 16.70 mL (26.70 mmol) of 1.6 M *n*-butyllithium in 100 mL of tetrahydrofuran. The solution of 2 was then added via a double needle canula, using nitrogen pressure over a 15-min period to a -78 °C solution of ethyl chloroformate (4.24 g, 39.22 mmol) in 30 mL of tetrahydrofuran. The resulting solution was allowed to warm to 0 °C and worked up in the same manner as previously described to yield 5.02 g (85%) of 4.

Registry No. 4, 82951-41-5; **5**, 82963-09-5; 2-(3-buten-1-yl)-1,3dithiane, 16885-20-4; ethyl chloroformate, 541-41-3.

Synthesis of 7H- and 9H-Cyclopenta[a]pyrene

Hongmee Lee and Ronald G. Harvey*

Ben May Laboratory, University of Chicago, Chicago, Illinois 60637

Received March 23, 1982

The polycyclic hydrocarbons 7H- and 9H-cyclopenta-[a] pyrene (1 and 2), unknown prior to these studies, are

of interest as potential mutagens and carcinogens to test theories of carcinogenesis. The 7H isomer, 1, is structurally related to cyclopenta[cd]pyrene (3), 7,8-dihydrobenzo-[a]pyrene (4a), and trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (4b) in that these molecules all contain an olefinic bond linked to the 1-position of pyrene. The latter three compounds exhibit mutagenic¹⁻⁴ and carcinogenic³⁻⁵

⁽¹⁾ Eisenstadt, E.; Gold, A. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 1667.