might prove to be a more definitive and satisfactory nitroso spin trap for peroxyl radicals than MNP because the electron-withdrawing CF_3 group would be expected to stabilize the spin adduct, $\rm CF_3N(O)OOR.^{11}$

Photolysis of an oxygen-saturated solution of di-tertbutyl ketone in CFCl₃ at 173 K in the cavity of an EPR spectrometer yielded the persistent tert-butylperoxyl radical (single line, $g = 2.0146$). On cutting off the UV irradiation and, in the dark, 14 passing a fine stream of bubbles of CF3N0 through the solution, the tert-butylperoxyl radical was immediately destroyed with the formation of another persistent radical. The EPR parameters for this second radical, viz.,¹⁶ $g = 2.0059$, $a^N(1N) = 22.76$ $G, \alpha^F(3F) = 5.80$ G, identify it as a nitroxide. Repetition of this experiment using isotopically labeled oxygen (74 atom % **170)** caused the doubly labeled tert-butylperoxyl radical $(a^{17}O = 23.4$ and 17.6 G)^{18,19} to be converted to nitroxide, which showed additional hyperfine splitting by only a single ¹⁷O atom $(a^{17}O = 0.93 \text{ G})^{16}$ and no line broadening that might be attributable to a second **¹⁷⁰** atom. This suggests that the observed nitroxide is not the peroxyl adduct, **1,** but is instead the tert-butoxyl adduct, **2,** formed by the reaction sequence:

$$
(Me3C)2C=O \xrightarrow{hv} 2Me3C \cdot + CO
$$

\n
$$
Me3C \cdot + O2 \rightarrow Me3COO \cdot
$$

\n
$$
Me3COO \cdot + CF3NO \rightarrow CF3N(O)OOCMe3
$$

\n
$$
CF3N(O)OOCMe3 \rightarrow CF3NO2 + Me3CO \cdot
$$

\n
$$
Me3CO \cdot + CF3NO \rightarrow CF3N(O)OCMe3
$$

Further confirmation of this spectral assignment was obtained by generating tert-butoxyls by the thermal decomposition of di-tert-butyl hyponitrite in the presence of CF_3NO in C_6F_6 at 300 K. A nitroxide having the EPR parameters reported above, which in this case must be **2,** was obtained. $M_{\rm eq}$ CON=NOCMe₃ \rightarrow 2Me₃CO \cdot + N₂

$$
Me3CON=NOCMe3 \rightarrow 2Me3CO· + N2
$$

Final confirmation that $CF₃NO$ does not yield an observable peroxyl spin adduct was obtained by generating tert-butoxyl and tert-butylperoxyl radicals simultaneously in its presence. **A** solution of di-tert-butyl trioxide13 was prepared by UV photolysis of di-tert-butyl peroxide and isobutane in oxygen-saturated CFC l_3 at 163 K. The light was cut of f^{14} and CF_3NO was bubbled into the solution; the temperature was then allowed to increase to ca. 240 K at which point the trioxide decomposes¹³ to form the alkoxyl and peroxyl radicals. Only nitroxide **2** was observable. M_{e_3} COOOC $M_{\text{e}_3} \rightarrow M_{\text{e}_3}$ CO $\cdot + M_{\text{e}_3}$ COO \cdot

$$
\text{Me}_3\text{COOOCMe}_3 \rightarrow \text{Me}_3\text{CO} \cdot + \text{Me}_3\text{COO}
$$

- **(18)** Adamic, **K.;** Ingold, K. U.; Morton, J. R. J. Am. *Chem. SOC.* **1970, 92, 922-923.**
- **(19)** Howard, **J. A.** Can. *J. Chem.* **1972,50, 1981-1983.**

Since $CF₃NO$ does not yield an observable tert-butylperoxyl spin adduct, it is highly improbable that MNP could do so. Our results therefore support the conclusion¹⁰ that the reaction of MNP with peroxyl radicals yields the alkoxyl spin adduct. The contrary conclusion⁸ rests on an experiment in which $\rm{Me}_{3}CO^{17}O^{17}OCHMe_{2}$ (generated by photolysis of $\text{Me}_3\text{COOCMe}_3$ in $^{34}\text{O}_2$ -saturated propane) was allowed to warm up to 263 **K** in the presence of MNP. Two 170-labeled nitroxides were detected. Their EPR parameters were $g = 2.0057$, $a^N = 27.25$ G, $a^{170}(1^{17}O) = 1.03$ G, and $g = 2.0056$, $a^N = 28.7$ G, $a^{170}(1^{17}O) = 4.6$ G. In a separate experiment the former radical was identified as $Me₃CN(\dot{O})¹⁷OCMe₃$. The latter radical was assigned as a peroxyl spin adduct, $Me₃CN(O)¹⁷OOR$, with $R = Me₃C$ or MezCH. We suggest that the latter radical was actually the isopropoxyl spin adduct, $Me₃CN(O)¹⁷OCHMe₂$. This suggestion receives support from the fact that for $Me₃CN(O)OR$ radicals the value of a^N decreases along the series $R = Me$, Et, *i*-Pr, *t*-Bu.²⁰⁻²² In 2-propanol as solvent, $a^N = 29.0$ G for $R = i-Pr^{21}$ and 27.06 G for $R = t-Bu, ^{22}$ values which are in satisfactory agreement with $a^N = 28.7$ G for $R = i-Pr$ (our assignment) and 27.25 G for $R = t-Bu$ (original8 assignment). Such a comparatively large change in a^N for what would appear to be a minor change in the nature of R implies a significant difference in the configuration and/or conformation of the two radicals. Such a change in geometry could, we suggest, also be sufficient to change a^{170} from 1.0 G for R = t-Bu to 4.6 G for R = $i-Pr$.

Finally, we note that although our hope that $CF₃NO$ would yield observable spin adducts with peroxyl radicals was not realized, it did yield a spin adduct with tertbutoxyl that was very much more persistent than the $MNP-tert$ -butoxyl spin adduct²³ and other alkoxy alkyl nitroxides. Thus, for example, CF₃N(O)OCMe₃ at an in-
itial concentration of ca. 1.1 \times 10⁻⁵ M in CFCl₃ decayed with first-order kinetics and with a half-life of ca. 105 s at 313 K.²⁴ For comparison, the half-life of $Me₃CN(O)$ -OCMe₃ in di-tert-butyl peroxide as solvent was found²³ to be ca. 5 s at the same temperature. Trifluoronitrosomethane may therefore have some advantages over MNP as a spin trap for alkoxyl radicals.

Registry No. Me₃COO., 3395-62-8; CF₃NO, 334-99-6; CF₃N(O.)-OCMe3, **82880-42-0.**

(22) Janzen, E. G.; Coulter, G. A. Tetrahedron Lett. **1981,22,615-619. (23)** Perkins, **M. J.; Roberta,** B. P. *J. Chem.* Soc., Perkin Trans. **2 1974,**

297-304.

(24) The final products can be presumed to be N,N'-di-tert-butoxyl-*N*,*N'*-bis(trifluoromethyl)hydrazine and trifluoronitromethane.²⁵ (25) Barton, D. H. R.; Harris, R. L.; Hesse, R. H.; Pechet, M. M.;

Urban, F. J. J. *Chem. SOC.,* Perkin Trans. **1 1974, 2344-2346.**

An Unusual Dimer Resulting from the Addition of Ethyl Chloroformate to a 2-Lithio-1,3-dithiane

John *C.* Sih,* David R. Graber, Stephen A. Mizsak, and Terrence A. Scahill

The Upjohn Company, Kalamazoo, Michigan *49001*

Received April *27, 1982*

Some years ago, Corey and Seebach' reported that treatment of 2-lithio-l,3-dithianes **1** at -70 "C with a large

⁽¹⁰⁾ **Pfab, J. Tetrahedron Lett. 1978, 843-846.** (11) In this connection note that $CF_3OOOCF_3^{12}$ is thermally much more stable than Me₃COOOCMe₃.¹³

more state than Me₃COOCMe₃.

(12) Anderson, L. R.; Fox, W. B. J. Am. Chem. Soc. 1967, 89,

4313-4315. Thompson, P. G. *Ibid.* 1967, 89, 4316-4319.

(13) Bartlett, P. D.; Günther, P. J. Am. Chem. Soc. 1966, 88,

3288-32

⁽¹⁴⁾ The photolysis of CF₃NO with either UV or visible light yields the extremely persistent (CF₃)₂NO· radical.¹⁵ (15) Chatgilialoglu, C.; Ingold, K. U. J. Am. Chem. Soc. 1981, 103, **4833-4837.**

⁽¹⁶⁾ The EPR **spectrum** of this radical shows some interesting changes

with temperature that will be reported in detail elsewhere.¹⁷ (17) Chatgilialoglu, C.; Ingold, K. U. *J. Phys. Chem.*, in press.

⁽²⁰⁾ Sargent, F. P.; Gardy, E. M. *J.* Phys. *Chem.* **1976,80,854-856. (21)** Sargent, **F. P.;** Gardy, E. M. *J. Phys. Chem.* **1977,81,1215-1216.**

⁽¹⁾ E. **J.** Corey and D. Seebach, Angew. Chem., Int. Ed. Engl., **4,1077 (1965).**

Table I. 'H NMR Data for 5

hydrogen	chemical shift ^a (multiplicity)	coupling constant, Hz
$CH, COC = O$	1.28 (t) ^b	7.0
SCH, CH, CH, S	1.84 (quint)	7.0
$CH2CH2C=Cl(2)$	$2.0 - 2.2$ (m)	
$CH_2C=C(1)$	$2.0 - 2.2$ (m)	
$CH, C=C(1)$	2.4(m)	
\overline{SCH} , CH ₂ CH ₂ S	2.60(t)	7.0
	2.70(t)	7.0
H_{eq}	H_{av} 3.29 (d, d, d) H_{eq} 2.6-2.7 (m)	$J_{\text{gem}} = 14.0,$ J_{vic} = 12.0, 2.0
$CH2OC=O$	4.26(q)	7.0
$CH, = C$	4.99(d, d)	$J_{\text{cis}} = 10.0,$ $J_{\text{gem}} = 2.0$
	5.06 (d, d)	J_{trans} = 18.0
CH , $CH=CH$,	5.83 (d, d, t)	J_{vic} = 7.0

a Chemical shifts in parts per million relative to internal tetramethylsilane. \mathbf{b} **s** = **singlet**, **d** = **doublet**, **t** = **triplet**, $q =$ **quartet**, $m =$ multiplet.

excess of ethyl chloroformate provided the ethyl carboxylates **3** in good yields. As a method for the preparation

1, R, = **2, R,** = **3, R,** = **4, R,** = **RZ CH,, CH,Ph; R,** = **Li CH,=CHCH,CH,; R,** = **Li CH,, CH,Ph; R,** = **CO,C,H, CH,=CHCH,CH,; R,** = **C0,C**

of various α -keto esters, we required a synthesis of dithiane ester **4.** Under somewhat different conditions, addition of ethyl chloroformate² to a -50 \degree C tetrahydrofuran solution of 2-(buten-1-yl)-2-lithio-1,3-dithiane (2) afforded not only the desired product **4** in low yield but a second, more polar dimeric compound. We report in this paper the structural assignment *5* for this anomalous compound.

From a cursory examination, the 'H NMR spectra of both compounds appeared very similar. The only distinguishing features in their spectra was found in the 'H integration. The spectrum of **4** showed, **as** expected, a 1:l ratio for the two downfield dithiane ring hydrogens³ (H_{ax} , δ 3.29) relative to the carbethoxy hydrogens (CO₂CH₂CH₃). In the spectrum of the unknown, integration revealed two equivalent carbethoxy groups for each dithiane ring $(CO_2CH_2CH_3; H_{ax}$, ratio 2:1).

To determine all the possible structures for the dimer that best satisfy the NMR requirements, the NMR data was input to a computer-assisted structure-elucidation program (CASE).4 The observed 'H and 13C spectral properties of the unknown product are presented in Tables I and 11.

There was no duplication in the 'H absorptions for the carbethoxy and butenyl moieties. Consequently, these groups resided in a symmetrical **or** nearly symmetrical magnetic environment with respect to each other. The 13C spectrum further reflected the symmetry properties of the molecule, e.g., the vinyl carbons were only slightly dis-

Table 11. 13C NMR Data for 5

	carbon	chemical shift ^a (multiplicity)
	CH ₂ CO	14.04 (q) ^b
	$\overline{SCH}_2CH_2CH_2S$	25,00(t)
	SCH, CH, CH, S	27.43(t)
	SCH, CH, CH, S	28.51(t)
	$-S_3CH_2CH_2C=C$	42.09(t)
	$SCH_2CH_2C=C$	32.86(t)
	$CH, C=C$	31.92(t)
		28.92(t)
	SCH, CH, CH, S	28.33(t)
	OCH,	62.03(t)
		61.15(s)
		62.25(s)
	$CH2=C$	115.20(t)
		115,35
	$CH=C$	137.00(d)
		137.38
		168.62(s)
		^a Chemical shifts in parts per million relative to internal
		tetramethylsilane. b s = singlet, d = doublet, t = triplet,
$q =$ quartet.		
		placed, a single set of signals for the carbethoxy groups,
		and doubly intense lines corresponding to the carbons
		adjacent to the sulfurs ($SCH_2CH_2CH_2S$ and SCH_2CH_2 -
		$CH2SCH2$. The most revealing structural information
		obtained from the ¹³ C spectrum was the presence of two
		quaternary carbons at 61.15 and 62.25 ppm.
		Among the possible structures generated by CASE, only

Among the possible structures generated by CASE, only **5,6,** and **7** were in agreement with the observed **Nh4R** data.

Structures **6** and **7** can be ruled out by considering their feasibility of formation. The assignment of structure **5** to the dimer was also consistent with the experimental findings and mechanism of formation. The yield of *5* varied somewhat, depending on the rate of ethyl chloroformate addition and reaction temperature. Addition of ethyl chloroformate to a -15 °C solution of 2^5 or a slow addition of reagent favored the formation of *5.* Irrespective of the addition rate and temperature, TLC analysis of the

⁽²⁾ Although the large excess of ethyl chloroformate used in ref 1 was not specified, we suspect these workers employed greater than 2 equiv. The resulta reported herein were obtained with less than 2 equiv of reagent.

⁽³⁾ For a discussion of the ¹H NMR properties of 1,3-dithianes, see E. **L. Eliel, A. A. Hartman, and A.** *G.* **Abatjoglon, J.** *Am. Chem.* **Soc., 96, 1807 (1974).**

⁽⁴⁾ja) L. **A. Dol& and M. E. Monk, Current Chemotherapy** and **Infectious Disease Proceedings of the 11th ICC** and **19th ICAAC American Society of Microbiology, 1980, p 467-469; (b) L. A. Dolak and C. DeBoer, J.** *Antibiot.,* **33, 83 (1980), and references cited therein.**

⁽⁵⁾ Even when the reaction was carried out by rapid addition of exceas ethyl chloroformate (10 equiv) to a -73 OC tetrahydrofuran solution of 2 (1 **equiv), the formation of 5 was not totally suppressed. TLC analysis indicated 10-15% of dimer 5 and 85-90% of 4.**

crude reaction mixture always indicated **5 as** the major side product. However, when an inverse addition procedure was used, **4** was then obtained **as** the only product in excellent yield **(85%).6**

A plausible mechanism to account for the formation **of 5** involves reaction at sulfur of dithiane **4** with the lithio anion **2** to generate the ester enolate 8. In the presence

of ethyl chloroformate, **8** was trapped to yield dimer **5.** It was surprising that **2** served **as** a nucleophile toward sulfw and not the carbonyl group of **4.7**

Further experiments are required to determine the generality of this unusual dimerization reaction. We suspect, however, that formation **of** dimeric side products, such **as 5,** can occur whenever 2-lithio-1,3-dithiane derivatives are alkylated with ethyl chloroformate. The inverse addition procedure allows the reaction to proceed in the normal manner. This technique insures a high yield of the desired product and avoids the use of excessive amounts of ethyl chloroformate.

Experimental Section

All ¹H NMR spectra were run in CDCl₃ solutions with tetramethylsilane as the internal standard, using either a Varian A-60A or a Varian **XL-200** spectrometer operating in the FT mode. All 13C NMR spectra were run on the same Varian **XL-200** tuned to the carbon resonance frequency **(50.3** MHz). The decoupler was gated on and off during various experiments to obtain noisedecoupled, off-resonance and coupled with NOE enhancement spectra. High-resolution mass spectra were recorded with a CEC **21-llOB** spectrometer at **70** eV.

Typical Procedure for the Addition of Ethyl Chloroformate to 2-(Buten-l-yl)-2-lithio-1,3-dithiane *(2).* To a magnetically stirred solution of **2-(buten-l-yl)-l,3-dithiane (11.30** g, **64.94** mmol) in **200** mL of tetrahydrofuran, cooled in a **-35** "C bath, was added **41.40** mL of n-butyllithium **(1.6** M in hexane, **66.24** mmol). Stirring was continued for **1.5** h while the cooling bath temperature was maintained between **-25** and **-20** "C. At the end of this period, the resulting rust-colored solution of **2** was cooled to -50 "C, and **9.82** g **(90.92** mmol) of ethyl chloroformate was added over a 3-5-min period. After addition, the cooling bath was removed and the reaction allowed to warm to $0 °C$. The solution was then poured into **150** mL of cold **1** N potassium hydrogen sulfate solution and thoroughly extracted with ether. The combined ether extracts were successively washed with **1** N

(6) D. Seebach and E. J. Corey, J. Org. Chem., 40, 231 (1975). These authors obtained by inverse addition a 60% yield of 3 ($R = CH_3$) when 10 mmol of 1 ($R = CH_3$) was added to a -73 °C tetrahydrofuran solution **of 200 mmol of ethyl chloroformate.**

(7) B. M. Trost and M. T. K. Mao, *Tetrahedron Lett.,* **3523 (1980). A similar reaction waa observed where a Grignard reagent reacted with lactone a exclusively at sulfur and the resulting enolate trapped with acetaldehyde to give alcohol** b.

sodium hydroxide solution, water, and saturated brine and dried through anhydrous sodium sulfate. Removal of the solvent in vacuo gave a residual yellow oil, which was chromatographed with **1** kg of silica gel. Elution with Skellysolve B-ethyl acetate **(151,** v/v) afforded **4.05** g of **4** and **5.20** g of dimer **5,** both as viscous colorless oils [TLC, Skellysolve-B-ethyl acetate **(9:1)]:** R, **0.36** for 5 and 0.46 for 4; mass spectrum, m/e calcd for 4 $(C_{11}H_{18}O_2S_2,$ M⁺) 246.0748, found 246.0735; mass spectrum, m/e for 5 calcd

for $C_{14}H_{23}O_4S_2$ (M⁺ - SCH₂CH₂CH₂S(CH₂CH₂CH=CH₂)CH **319.1038.** found **319.1043.**

Anal. Calcd for 4 (C₁₁H₁₈O₂S₂): C, 53.62; H, 7.36. Found: C, **53.87;** H, **7.52.** Calcd for **5** (C22H3s04S4): C,**53.62;** H, **7.36.** Found: C, **53.85;** H, **7.42.**

In other experiments, we have observed by TLC an increase in yield of **5** with respect to **4** when either the ethyl chloroformate addition was extended over a 15-min period or added to a **-15** to -10 $^{\circ}$ C solution of 2.

Inverse Addition Procedure. 2 was prepared as described above from **4.55** g **(26.15** "01) of **2-(buten-l-yl)-1,3-dithiane** and **16.70** mL **(26.70** mmol) of **1.6** M n-butyllithium in **100** mL of tetrahydrofuran. The solution of **2** was then added via a double needle canula, using nitrogen pressure over a 15-min period to a **-78** "C solution of ethyl chloroformate **(4.24** g, **39.22** mmol) in **30** mL of tetrahydrofuran. The resulting solution was allowed to warm to 0 "C and worked up in the same manner **as** previously described to yield **5.02** g (85%) of **4.**

Registry No. 4, 82951-41-5; 5, 82963-09-5; 2-(3-buten-l-y1)-1,3- dithiane, **16885-20-4;** ethyl chloroformate, **541-41-3.**

Synthesis of *7H-* **and 9H-Cyclopenta[a Ipyrene**

Hongmee Lee and Ronald G. Harvey*

Ben May Laboratory, University *of* Chicago, Chicago, Illinois *⁶⁰⁶³⁷*

Received March *23, 1982*

The polycyclic hydrocarbons $7H$ - and $9H$ -cyclopenta-[alpyrene **(1** and **2),** unknown prior to these studies, are

of interest **as** potential mutagens and carcinogens to test theories of carcinogenesis. The 7H isomer, **1,** is structurally related to cyclopenta[cd]pyrene **(3),** 7,8-dihydrobenzo- [alpyrene **(4a),** and **trans-7,8-dihydroxy-7,8-dihydro**benzo[a]pyrene **(4b)** in that these molecules all contain an olefinic bond linked **to** the 1-position **of** pyrene. The latter three compounds exhibit mutagenic¹⁻⁴ and carcinogenic³⁻⁵

⁽¹⁾ Eisenstadt, E.; Gold, A. *Proc. Natl. Acad.* Sci. *U.S.A.* **1978,** *75,* **1667.**